55 research outputs found

    Observation and analysis of diving beetle movements while swimming

    Get PDF
    The fast swimming speed, flexible cornering, and high propulsion efficiency of diving beetles are primarily achieved by their two powerful hind legs. Unlike other aquatic organisms, such as turtle, jellyfish, fish and frog et al., the diving beetle could complete retreating motion without turning around, and the turning radius is small for this kind of propulsion mode. However, most bionic vehicles have not contained these advantages, the study about this propulsion method is useful for the design of bionic robots. In this paper, the swimming videos of the diving beetle, including forwarding, turning and retreating, were captured by two synchronized high-speed cameras, and were analyzed via SIMI Motion. The analysis results revealed that the swimming speed initially increased quickly to a maximum at 60% of the power stroke, and then decreased. During the power stroke, the diving beetle stretched its tibias and tarsi, the bristles on both sides of which were shaped like paddles, to maximize the cross-sectional areas against the water to achieve the maximum thrust. During the recovery stroke, the diving beetle rotated its tarsi and folded the bristles to minimize the cross-sectional areas to reduce the drag force. For one turning motion (turn right about 90 degrees), it takes only one motion cycle for the diving beetle to complete it. During the retreating motion, the average acceleration was close to 9.8 m/s2 in the first 25 ms. Finally, based on the diving beetle's hind-leg movement pattern, a kinematic model was constructed, and according to this model and the motion data of the joint angles, the motion trajectories of the hind legs were obtained by using MATLAB. Since the advantages of this propulsion method, it may become a new bionic propulsion method, and the motion data and kinematic model of the hind legs will be helpful in the design of bionic underwater unmanned vehicles

    Energy metabolism disturbance in migraine: From a mitochondrial point of view

    Get PDF
    Migraine is a serious central nervous system disease with a high incidence rate. Its pathogenesis is very complex, which brings great difficulties for clinical treatment. Recently, many studies have revealed that mitochondrial dysfunction may play a key role in migraine, which affects the hyperosmotic of Ca2+, the excessive production of free radicals, the decrease of mitochondrial membrane potential, the imbalance of mPTP opening and closing, and the decrease of oxidative phosphorylation level, which leads to neuronal energy exhaustion and apoptosis, and finally lessens the pain threshold and migraine attack. This article mainly introduces cortical spreading depression, a pathogenesis of migraine, and then damages the related function of mitochondria, which leads to migraine. Oxidative phosphorylation and the tricarboxylic acid cycle are the main ways to provide energy for the body. 95 percent of the energy needed for cell survival is provided by the mitochondrial respiratory chain. At the same time, hypoxia can lead to cell death and migraine. The pathological opening of the mitochondrial permeability transition pore can promote the interaction between pro-apoptotic protein and mitochondrial, destroy the structure of mPTP, and further lead to cell death. The increase of mPTP permeability can promote the accumulation of reactive oxygen species, which leads to a series of changes in the expression of proteins related to energy metabolism. Both Nitric oxide and Calcitonin gene-related peptide are closely related to the attack of migraine. Recent studies have shown that changes in their contents can also affect the energy metabolism of the body, so this paper reviews the above mechanisms and discusses the mechanism of brain energy metabolism of migraine, to provide new strategies for the prevention and treatment of migraine and promote the development of individualized and accurate treatment of migraine

    Dynamics and hydrodynamic efficiency of diving beetle while swimming

    Get PDF
    Diving beetle, an excellent biological prototype for bionic underwater vehicles, can achieve forward swimming, backward swimming, and flexible cornering by swinging its two powerful hind legs. An in-depth study of the propulsion performance of them will contribute to the micro underwater vehicles. In this paper, the kinematic and dynamic parameters, and the hydrodynamic efficiency of the diving beetle are studied by analysis of swimming videos using Motion Capture Technology, combined with CFD simulations. The results show that the hind legs of diving beetle can achieve high propulsion force and low return resistance during one propulsion cycle at both forward and backward swimming modes. The propulsion efficiencies of forward and backward swimming are 0.47 and 0.30, respectively. Although the efficiency of backward swimming is lower, the diving beetle can reach a higher speed in a short time at this mode, which can help it avoid natural enemies. At backward swimming mode, there is a long period of passive swing of hind legs, larger drag exists at higher speed during the recovery stroke, which reduces the propulsion efficiency to a certain extent. Reasonable planning of the swing speed of the hind legs during the power stroke and the recovery stroke can obtain the highest propulsion efficiency of this propulsion method. This work will be useful for the development of a bionic propulsion system of micro underwater vehicle

    Configuration analysis of the influencing factors of design standardization in China’s building industrialization —— Qualitative Comparative Analysis based on (fsQCA) fuzzy set

    No full text
    The construction industrialization will be the main development direction of building industry in the future, how to achieve building industrialization has become the focus of attention in the industry. As the core of building industrialization, design standardization is an important method to improve the efficiency and save the construction period of prefabricated buildings. The unsound design standardization is the most prominent reason that hinders the development of the whole building industrialization. How to realize design standardization in design enterprises has not been effectively solved. Questionnaire survey was used to investigate and collect data from relevant enterprises, and fuzzy set Qualitative Comparative Analysis (fsQCA) was used to analyze the data. The causal and complex influence mechanism of the configuration effect of five factors at internal and external levels on design standardization was discussed. The results show that:government and industry regulations and professional and technical personnel are sufficient and unnecessary conditions to influence design standardization;When government and industry regulations and professional and technical personnel exist at the same time or only one of them exists, design standardization can be realized by complementing other influencing factors. The conclusion provides valuable reference for future research and application in theory and practice

    Optimization of green and low-carbon concept in prefabricated building design

    No full text
    Prefabricated building, as a representative of modern architecture, has been vigorously promoted, and the traditional problems of large on-site labor and long construction period have been well solved. At present, the development focus of prefabricated building has shifted to the stage of low-carbon, environmental protection, green and energy-saving sustainable development. Whether green and low-carbon design is considered in the planning and design stage has the greatest impact on the whole life cycle of the building. Therefore, this paper mainly summarizes the concept and importance of green and low-carbon building design; The paper points out the embodiment of green and low-carbon concept in prefabricated building design; And how to calculate the carbon emission in the design stage; In view of the prefabricated building design stage to achieve a better green low-carbon state of optimization countermeasures

    The Deformation Characteristics of Weak Foundation with High Back Siltation in the Immersed Tunnel

    No full text
    The deformation characteristics of a weak foundation with high back siltation in an immersed tunnel lack empirical data; however, the calculation method and control of foundation settlements are highly important to tunnel design and construction. This paper takes a cross section of the natural foundation of an immersed tunnel in the Hong Kong-Zhuhai-Macao Bridge (HZMB) as the research object and conducts a centrifuge model test. The soil layer is divided, and the soil parameters are determined by the CPTU and the indoor dynamic three triaxial test. In consideration of the actual engineering scale and the ability of the centrifuge model test system, the similarity ratio of the model to the prototype is studied and determined. As for the immersed tube structure, the deformation characteristics are mainly studied. Therefore, the organic glass is selected as the model material by the similarity of the elastic modulus and the density. The characteristics of the resilience and recompression of the natural foundation of the immersed tunnel and the strain characteristics of the immersed tube structure are obtained by the analysis of the multiworking condition test data. Moreover, based on the actual engineering geological conditions of the subsea tunnel, a numerical calculation method is carried out to check the reliability of the centrifuge model test results. The results of the numerical calculation are consistent with the model test results
    • …
    corecore